
Rosemary Francis

Generating definitions of cell
cycles in π-calculus from

mathematical models

Part II Computer Science Tripos

Newnham College

May 16, 2005

Title page image courtesy of Sergei Maslov of Brookhaven National Laboratory, NY

Proforma

Name: Rosemary Francis
College: Newnham College
Project Title: Generating definition of cell

cycles in π-calculus from math-
ematical models

Examination: Part II Computer Science Tri-
pos, 2005

Word Count: 9187
Project Originator: Rosemary Francis
Supervisor: Dr P. Liò

Original Aims of the Project

To design a process by which mathematical models of biochemical systems may
be translated into stochastic π-calculus. This required the design of an input
language to suitably describe the mathematical models. The purpose of which
was to write a translator to automate the translation process. The translator
should be easy to use by biochemists and computer scientists and require no
in-depth knowledge of either subject. The purpose of such a translator being
to encourage the use of stochastic π-calculus in the modelling and simulation of
biochemical systems.

Work Completed

As well as designing and implementing the translator I was able to contribute to
the study of stochastic π-calculus in the context of biological modelling languages.
I was able to address some of the problems with π-calculus and suggest possible
solutions within the language.

Special Difficulties

none

i

Declaration

I, Rosemary Francis of Newnham College, being a candidate for Part II of the
Computer Science Tripos [or the Diploma in Computer Science], hereby declare
that this dissertation and the work described in it are my own work, unaided
except as may be specified below, and that the dissertation does not contain
material that has already been used to any substantial extent for a comparable
purpose.

Signed

Date

ii

Acknowledgements

First of all I have thank Pietro for supervising my project and giving up so much
time to help me. I also owe a lot to Andrew and Luca for answering my questions
on MAPK and SPiM. Thanks also to Kate and Katy for giving me so much
encouragement. Thank you to Dad for all your spell checking abilities.

iii

Contents

1 Introduction 1
1.1 Why Stochastic π-calculus? . 2
1.2 Previous work . 2
1.3 The project . 3
1.4 Applications . 3

2 Preparation 5
2.1 Language choice . 5
2.2 Planning . 6
2.3 Testing . 8

3 Implementation 10
3.1 The Input Language . 10
3.2 The Stochastic π-calculus . 13
3.3 Modelling biochemical reactions 16
3.4 Developing the model . 19
3.5 Translation . 23
3.6 SPiT . 25

4 Evaluation 30
4.1 Testing . 30
4.2 Mitogen-Activated Protein Cascade 33

5 Conclusion 36
5.1 How suitable is stochastic π-calculus in the modelling of genetic

networks? . 36
5.2 How closely have I met the goals set by my proposal? 37
5.3 How could this project have been improved with hindsight? 37
5.4 Future directions . 38

A SPiT files i
A.1 Make file . i
A.2 Signature files . i

iv

B MAPK example iv
B.1 SPiT Input File . iv
B.2 SPiT Generated π-calculus for the MAPK example vi

v

vi

Chapter 1

Introduction

The motivation for this project stems from the rapidly developing area of Bioin-
formatics and the increased need for computer science to meet the computational
requirements of modern genetic analysis. This is a journey into concurrency se-
mantics and the ability of process calculi to represent the real world accurately.

Figure 1: Protein map of a yeast cell1

Recent advances in genetics have provided a good deal of information about the
genetic make-up of cells, but they still do not tell us how the cells work. Figure
1 illustrates the complexity of the information available.

Having mapped the genome of many organisms, we can say what is in the cell,
but not what would happen if changes were made to the DNA. Simulation is the
way in which the dynamics of a cell cycle may be understood.

Currently, simulation of biological systems is primitive, mostly involving building

1Graph showing the interactions between protein within a yeast cell cycle.
Image courtesy of Jeff Kennedy Associates

1

CHAPTER 1. INTRODUCTION 2

mathematical models of the system via a series of rate equations. These can be
plotted and stable solutions found but, as concentration2 levels are modelled as
continuous values, the models are only indicative of results from systems with
very high concentrations where individual molecules have little effect. In reality,
there are many systems sensitive to individual molecules.

1.1 Why Stochastic π-calculus?

Stochastic π-calculus is a process calculus designed to model non-deterministic
systems. It has the facility of parallel execution, and models communication be-
tween individual processes. It is ideally suited to handling mathematical models
of rate reactions, as the concept of rate and concurrent action is implicit in the
language.

Non-deterministic modelling of biochemical systems allows for far greater ac-
curacy than mathematical models. This because it is possible to model sys-
tems sensitive to small changes in integer concentration accurately. Using a
non-deterministic model, each time a system is simulated there will be slightly
different results. This is what you would expect of real life experiments, since
the reaction rate represents only the probability of the reactants meeting and a
reaction happening. Mathematical models give us only the average value.

Using π-calculus allows you to run simulations of complex experiments, vastly
cutting down on the time and expense needed for running real experiments.

1.2 Previous work

System modelling languages similar to stochastic π-calculus have been around
for a long time, used in the study of concurrency theory. The laguage was ori-
gionally developed by Robin Milner3 for modelling systems such as the telephone
network. It is fairly recently that bioinformatics researchers have become inter-
ested in the study of π-calculus. The stochastic π-calculus was developed by
Corrado Priami4 for the purpose of modelling biological systems. Stochastic π-
calculus encorporates the notion of assigning probabilities to events needed for
stochasti simulation.

Various π-calculus simulators have been written. In particular I have been us-

2It is assumed that the systems are closed with fixed volume, so concentration is proportional
to the total number of molecules

3Communicating and Mobile Systems : The Pi-Calculus[R. Milner, 1999]
4Stochastic pi-Calculus [C. Priami, 1995]

CHAPTER 1. INTRODUCTION 3

ing SPiM5. One reason for choosing SPiM over other simulators is that SPiM
was written specifically with biochemical uses in mind. It is well known in the
field of formal language specification for bioinformatics and is used by those at
the forefront of current research6. It is newer and more up to date with current
developements than its main competitor, BioSPI7.

1.3 The project

This project describes the design and implementation of a genetic network to
stochastic π-calculus translator, SPiT. During the course of formalising a system-
independent modelling standard needed for automatic translation I have also ex-
plored how useful stochastic π-calculus is for modelling biochemical systems.

Currently not enough people have the inter-disciplinary
skills needed to describe biochemical systems in π-
calculus. An automatic translator would bridge the gap
between concurrency theory and the study of genetic net-
works.

By improving the way in which systems are represented, and making the simu-
lation techniques more accessible, I hope to encourage more wide spread use of
π-calculus simulation.

1.4 Applications

One application which is of particular interest at the moment is cancer gene de-
tection. After mapping the genome of a particular cell group and its mutations
by collecting data on the local effect of each gene, you can use microarray anal-
ysis to do a ‘spot the difference’ test of a cancerous cell compared to a healthy
one. You can then model the healthy cell with a different combination of the
differences each time until you find out which combination of genes causes the
cancerous behaviour.

Future work hopes to incorporate this kind of simulation into virus design in
the battle against viruses such as HIV.

5Stochastic π-calculus Machine [Phillips 2004]
6In particular Luca Cardelli’s group, Microsoft Research, Cambridge
7The BioSPI Project: http://www.wisdom.weizmann.ac.il/ biospi/

CHAPTER 1. INTRODUCTION 4

The application I will focus on is the simulation of the cell cycle, in particu-
lar the modelling of the signalling mechanisms. Currently the genes have been
mapped, but little is understood about the cycle as a whole. The importance of
each gene/protein is so far unknown.

Chapter 2

Preparation

The requirements of the translator were relatively straightforward. It should
translate any valid biochemical system into a valid pi-calculus system with the
same behaviour. The specifications for the language developed follow in the chap-
ters to come. In order not to constrain the tool, invalid systems should be allowed
and the behaviour documented where appropriate. I defined a valid system to
be any that can be represented by a list of chemical reactions. An invalid system
in a mathematical model is one which cannot possibly correspond to s system of
chemical reactions.

It should be easy to use, and require no knowledge of π-calculus or SPiM. Ideally
the program would be used by biochemists and therefore should assume very
little knowledge of computer science.

Although the translator is tailored towards use alongside the SPiM simulator,
the translator should be designed such that it is a simple task to adapt it for
other simulators and to update it should the syntax of SPiM alter during routine
updates.

All of these goals were taken into account during the design of the input lan-
guage and the translation algorithm and will be discussed in more detail in the
following chapters.

2.1 Language choice

SPiM is written in an object oriented functional programming language called
OCAML. In order to allow later integration of the translator into SPiM, the
translator was also written in OCAML.

OCAML was used to write SPiM because it allows a clear mapping from the

5

CHAPTER 2. PREPARATION 6

formal specification of the simulator onto the actual code. It is much easier to
implement a formal specification in a functional language because of the highly
mathematical syntax. This helps to reinforce the soundness and completeness of
SPiM, by having the implementation close to the specification, and has allowed
formal proof of its correctness.

The flexibility of OCAML data structures facilitates the manipulation of informa-
tion in the translator. This is why functional programming languages are often
used for compilers and translators. OCAML was therefore the obvious choice for
implementation of the translator.

2.2 Planning

During the planning stage I was careful to factor in time to learn how to use
the various languages and tools necessary to complete the given tasks. Having
reviewed well-known design models and their relevant merits, I designed a flexible
plan with short-term achievable goals, which allowed me to constantly review my
progress and re-assess my plan.

Design pattern

Implementation of my project lent itself well to two parallel paths of execution.
The tasks were not carried out entirely independently, but two tasks were on
the go at any one time. This not only meant that I remained motivated as I
could switch tasks at any time, but also that I was never dependent on others
returning information quickly. The module structure was chosen after studying
compiler design patterns. I identified key points in the translation process, and
encapsulated each of them within a module.

CHAPTER 2. PREPARATION 7

Define the
Input language

Learn to use
LEX and YACC

Learn OCAML

Write the Lexer

Draft the
remaining modules

Design the
modular overview

Design the
translation algorithm

Write the Yaccer

Design efficient
datastructures

Rewrite the
modules efficiently

Testing

Add the next feature

Invent representation
of more

complicated features

Evaluation using a
real example

Study biochemical systems
and existing

description languages

Phase 1

Phase 2

Phase 3

Figure 2: Flow diagram of work undertaken

The main body of the translator was designed in three phases. The first was
an abstract implementation written for the purpose of getting to grips with the
OCAML language and the features available. This first version was never de-
signed to be used, and no care was taken to write efficient code, but it was a
good foundation for a more refined version to emerge. This preliminary version
was where much of the module structure design emerged.

Once the capabilities of the language had been explored, the second version of the
translator was written with appropriate data structures and efficient recursion.
This was still a skeletal implementation designed only to translate the simplest
biochemical system, but it led the way for the final phase when more complicated
features of the semantics were implemented in stages. This method was similar
to the spiral model1 often used in software engineering.

The features that were added one by one are listed below. All will be discussed

1Boehm 1988

CHAPTER 2. PREPARATION 8

in greater detail in later chapters.

• Constant rate declaration

• Substance concentration declaration

• Duplicate products

• Decay reactions

• Reactions with more than two reactants

• Error checking and warnings

• Sample rates and simulation length

2.3 Testing

A lot of potential problems were avoided by the language choice. The OCAML
strong implicit type system means that where the modules did not fit together
properly this was picked up by the compiler when the module signatures were
compiled. Once the modules compiled it was straightforward to integrate them,
as a lot of the hard work had been done with separate compilation. Where the
data structures matched, so did the data.

I was then able to use each module to test the next. By printing a representation
of the data structure passed to and from each module, I was able to identify prob-
lems within each module as I went. Once one stage was manipulating the data
correctly, I was able to use it to test the next. This was a lot more productive
than trying to hand code sample data for testing individual modules, as even the
most simple example is nested quite deeply within data structures.

The modular structure was tested and re-evaluated during the first stage, and the
intermediate data structures adjusted appropriately for the OCAML language.
Once phase two was complete and tested, I was able to implement and test vari-
ous features of the biochemical systems individually in a recursive design pattern.
Testing was carried out between each change so that a working version was main-
tained throughout.

CHAPTER 2. PREPARATION 9

Simulation

As well as testing the translator on contrived examples, designed to look for pos-
sible bugs, I also used some previously unseen data2 to provide a final benchmark
of its performance. This was chosen from a yeast cell network. It had the ad-
vantage of being unseen from my point of view as well as including hand written
π-calculus for SPiM showing typical simulation results.

2C-Y. Huang and J. Ferrell, Ultrasensitivity in the mitogen-activated protein cascade, 1996

Chapter 3

Implementation

In this chapter is described the design and implementation of SPiT1 and the
translation algorithm. No special knowledge of π-calculus or biological systems
is assumed. Readers not familiar with π-calculus and biological systems can
consult the glossary for a reminder of important terms where neccessary.

3.1 The Input Language

The input language was designed with particular regard for ease of use. Bio-
chemists are fond of complex notation particular to their field, so care had to
be taken to ensure that the notation I adopted was accepted by biochemists
generally.

Notation

Biochemical systems can be represented in a variety of different forms. Most will
be familiar with the chemical reaction notation with the reactants on the left
and the products on the right. In this notation, a double arrow can be used to
denote a two way reaction. The diagrammatic form is useful to give an overview
of the system. Its appearance gives rise to the term ‘genetic network’. The terms
genetic network and protein network are often used interchangeably as genes are
merely design patterns for the proteins that control them.

1Stochastic Pi-calculus Tanslator

10

CHAPTER 3. IMPLEMENTATION 11

 A + B → C
C + Y + Z ↔ W

Chemical Reactions

d[C]/dt = k1[A][B] - k2[C][Y][Z]
d[W]/dt = k2[C][Y][Z]

Rate Equations

A

B

C

Y

Z

W

Network of reactions

k1
k2

Figure 3: Three ways to represent the same system

It is the system of rate equations that is normally described as a mathemat-
ical model and it is this that is used as a basis for the input language. The
model consists of the system of rate equations characterising the rate of change
of concentration of a given substance. In chemistry [A] is used to denote the
concentration of substance A and the constants ki denote finite rates of reaction
dependent on a number of factors.

A system of rate equations can be derived simply from a set of chemical re-
actions. I chose to focus on using rate equations because most systems of interest
are already represented as such, and others are easily translated from systems of
chemical reactions.

The rate of a reaction depends on the rate constant and the concentrations of
the reactants. The rate equation for a particular substance can be built up from
terms pertaining to the separate reactions involving that substance as a prod-
uct or reactant. Each term, in relation to the concentration of a substance, is
positive or negative depending on whether that term increases or decreases the
concentration.

This should become clear when you match up the terms in the equations in
the system above with the relevant reactions. For example, the rate equation of
C has a positive and a negative term because C is a reactant in one reaction and
a product in the other.

CHAPTER 3. IMPLEMENTATION 12

Creating a standard

Many attempts have been made to produce a standard for representing these
equations. One reasonable successful effort resulted in SBML2. This is a versa-
tile and complex language for representing a variety of biological systems and
concepts in a computer-readable form. The language has the capacity to repre-
sent a great deal of information and for that reason even very simple examples
become bloated. I chose to imitate the format of SBML rather than implement
the language itself, to reduce the amount of irrelevant information that had to
be included in the model for the translator. The input language had to be easy
to use. The language I have devised is simple and intuitive by comparison with
SBML’s verbose syntax and lengthy documentation.

The Grammar

The input file for the translator has three main sections. The first declares all
the constants and their rates. All constants have to be declared explicitly here.
The second section contains information about the initial concentrations of the
substances. If the initial concentration is zero then it is perfectly valid to omit
that substance from this section. A warning will be printed, however, in case a
typing error has led to an undeclared substance.

The following grammar is defined using BNF notation. For those not famil-
iar with this notation it is recommended to view a few samples of input files, to
be found in later sections and the appendix.

2Systems Biology Markup Language www.sbml.org

CHAPTER 3. IMPLEMENTATION 13

input ::= constant def list %% substance def list %% equation list

constant def list ::= constant def
| constant def list constant def

substance def list ::= substance def
| substance def list substance def

equation list ::= equation
| equation list equation

constant def ::= constant = float ;
substance def ::= substance : int ;

constant ::= ident
substance ::= ident

ident ::= [a-z, A-Z][a-z, A-Z, 0-9, _, ’]*

equation ::= d[substance]/dt = term list;

term list ::= term
| - term
| term list - term
| term list + term

term ::= constant substance list
| constant * int substance list
| int * constant substance list
| int constant substance list

substance list ::= [substance]
| [substance] substance list

3.2 The Stochastic π-calculus

The understanding of the subtleties of my project depends on an understanding
of the stochastic π-calculus as implemented by SPiM. Included below is a brief
overview of the elements of the language generated by the translator, followed
by a few examples. I am not attempting to explain the relationship between the
π-calculus and the biochemistry at this stage; later sections of the dissertation
deal with this.

CHAPTER 3. IMPLEMENTATION 14

Syntax

Process ::= new name:float:<> Process Finite rate channel restriction
| new name :<> Process Infinite rate channel restriction
| new name :<type> Process Typed rate channel restriction
| Process | Process Parallel execution
| !Channel Process Replicated channel
| Summation Choice
| if Boolean then Process else Process Conditional Execution
| (Process) Parenthesised process

Summation ::= () Idle process
| Channel; Process + Summation Choice

Channel ::= name <> Output channel
| name () Input channel

Parallel execution

Processes execute in parallel with the following semantics 3 . Processes existing
in parallel, independent from each other with the usual concurrency issues.

p→p′

p‖q→p′‖q
q→q′

p‖q→p‖q′

Choice

A process can consist of several terms in a summation. These represent the
possible different behaviours of the process. In SPiM the behaviour is chosen
non-deterministically according to the Gillespie algorithm4. This algorithm allows
systems to be represented as a form of random walk governed by the probabilities
associated with the reaction rate constants.

p→p′

p+q→p′
q→q′

p+q→q′

Restriction, Channels and Communication

π-calculus processes ‘reduce’ from one state to another. All reduction is via
channel communication. Output channels communicate with input channels of
the same name with the following semantics:

3The semantic notation reads: if p reduces to p′ then p ‖ q can reduce to p′ ‖ q
4Exact stochastic simulation of coupled chemical reactions [Gillespie, 1977]

CHAPTER 3. IMPLEMENTATION 15

a();p ‖ a〈〉;q → p ‖ q

Input channels and output channels are differentiated by different types of brack-
ets and complement each other. In the absence of any information being passed,
it does not matter which way the communication goes, only that every commu-
nication is between one input and one output channel.

All channels are restricted. Restriction is a form of scoping. Channels may
exist only within a process. For the purposes of this project all channels may be
considered global.

All channels must be declared explicitly with a new name:float rate:<> expres-
sion. The rate determines the probability of a communication occurring. Rates
can be finite or infinite. The higher the channel rate the more likely it is to com-
municate. Infinite rate channel communications have priority above all others.
During the communication, values may be passed if the channel is typed. In
modelling biochemical reactions this facility is only used for initialisation and all
typed channels have infinite rate.

It is this notion of channel rate and relative probability of a communication
that stochastic π-calculus differs from classic π-calculus.

Replicated action

In order to model a system, processes need to be instantiated and terminated. A
process may terminate by becoming the idle process. Processes are instantiated
with a replicated action. These, too, have to be paired with an appropriate input
or output.

!a();p ‖ a〈〉;q → p ‖ !a();p ‖ q

Graphical representation

Although there is a standard for the graphical representation of π-calculus, it is
almost as hard to understand as the calculus itself. I have used a non-standard
representation here, to try to make the main features of the language clearer to
understand.

CHAPTER 3. IMPLEMENTATION 16

p q

p' q'

p q' p' q

p + qa();p a<>;q

p q

!a();p a<>;q

p q

!a();p

a) b)

c) d)

Figure 4: Graphical representation of (a)parallel execution, (b)replicated action,
(c)communication and (d)choice

Part(a) of Figure 4 shows two processes p and q either becoming p and q’ or p’
and q.

Part(b) shows the instantiation of a process via a replicated channel.

Part(c) shows the change of state following a communication.

Part(d) shows a non deterministic choice between two possible behaviours within
a process.

3.3 Modelling biochemical reactions

Previous work

Much work has been done by key people5 in the field of using systems calculi
for the modelling of genetic networks. As each model is built up slowly by hand
this leads to a very good model, but relies heavily on specialist knowledge of the
system in question.

In every system there are some physical substances, the total concentrations
of which will remain constant. The substances merely switch between bound and

5Cardelli, Milner, Priami

CHAPTER 3. IMPLEMENTATION 17

unbound states as they interact. In the past it has been normal to represent each
of these substances as a separate process cycling between various states.

!H();

new e:10.0:<>

share<e>; (h_bound<>;() + e<>; H<>)

| !Cl(); share(e); e(); Cl<>

The snippet of π-calculus above illustrates my point. It represents the reaction
H+Cl → HCl where the hydrogen and chlorine atoms share an electron as they
bond to become HCl. The electron is shared via the share channel where upon
the hydrogen atom can take on either a bound state, h_bound, or communicate
with the Cl process via the e channel to return the system to its original state.
The H process cycles between a bound and unbound state indefinitely.

This is an excellent representation of this system but it requires intimate knowl-
edge of the substances in question. For example you would have to know that
these two bond covalently instead of simply becoming two ions in a solution.
Also, with more than one reaction it soon becomes a nightmare to represent.

With more than one product you would have to make a decision about which
reactant became which product. There is also no notion of a reactant dividing
into two products.

A fresh approach

I propose a far more general approach to the translation. I begin by describing a
simple framework upon which I started to make more important decisions about
the details of the translation.

Each substance, be it a product or a reactant, is modelled as a process in paral-
lel composition with every other reactant or product. You cannot have parallel
composition within a substance; this feature of the pi-calculus is used solely to
allow the substances to coexist in the system. For example in the simple reaction
Na + Cl → NaCl you would start with Na and Cl in parallel: Na|Cl.

The choices represent different binding possibilities. A reaction is represented
as a communication between two processes. The channel via which they commu-
nicate is named after the reaction rate constant and has the associated reaction
rate. π-calculus is designed so that the reaction rate corresponds to the rate of the
channel via which the reaction happens. In this way each reaction is an individ-
ual event in its own right. The only consequences are the products of the reaction.

CHAPTER 3. IMPLEMENTATION 18

The products are separate processes, independent of the reactants. After a re-
action has been simulated via a finite channel communication, the products are
instantiated via a series of (infinite rate) replicated channel communications. In
this way the reactants cease to exist after the reaction and leave no evidence of
having existed. To get back to the previous state, another reaction must occur
with the previous products as reactants and the previous reactants as products.

Example

The following example is the simplest you can represent. We are modelling the
reaction between a sodium (Na) and a chlorine (Cl) atom which becomes sodium
chloride (NaCl) with rate 100.0. I am assuming for the purposes of example that
this is an irreversible reaction. SPiM allows us to omit the idle process from the
syntax in order to abbreviate the code.

new ionize:100.0:<>

new Na:<>

new Cl:<>

new NaCl:<>

new Init:<int>

new NaCl_stable:0.0:<>

(!Na(); ionize<>

| !Cl(); ionize(); NaCl<>

| !NaCl(); NaCl_stable<>

| !Init(n); if n > 0 then (Na<> | Cl<> | Init<n-1>)

| Init<1>

)

In the code above there are two sections. The first is the channel declaration.
The first channel ionize represents the reaction and therefore has a finite rate.
The next two are used for instantiating the sodium, chlorine and sodium chloride
molecules. The fifth channel declaration is a special channel used for instantiat-
ing the system. The following three declarations are idle processes needed to get
the correct data from SPiM; they can be ignored in this example.

We are initialising the system with an atom of sodium and an atom of chlorine by
using an Init channel. This is standard practice when writing π-calculus models.

Init<> has infinite rate and so will communicate with !Init() which will then
loop, instantiating the sodium and chlorine with the replicated inputs !Na() and
!Cl().

CHAPTER 3. IMPLEMENTATION 19

(!Na(); ionize<>

| !Cl(); ionize(); NaCl<>

| !NaCl(); NaCl_stable<>

| ionize<>

| ionize(); NaCl<>

)

The ionize<> and ionize(); NaCl<> processes represent an atom of sodium
and an atom of chlorine respectively. They can communicate via the ionize

channel. After a communication the two processes will reduce to an idle process
and a process with an NaCl output channel.

(!Na(); ionize<>

| !Cl(); ionize(); NaCl<>

| !NaCl(); NaCl_stable<>

| ()

| NaCl<>

)

The NaCl<> channel communicates with the replicated input channel to reduce
the system to one containing only an NaCl_stable<> process. Processes begin-
ning with replicated input actions are never included as active in the system.

(!Na(); ionize<>

| !Cl(); ionize(); NaCl<>

| !NaCl(); NaCl_stable<>

| NaCl_stable<>

)

3.4 Developing the model

Apart from the simple framework described above, little attempt has previously
been made to standardise the representation of biochemical systems in stochastic
π-calculus. In the next few sections I will explain and justify the process by which
I did this in order to automate the translation process.

Decay reactions

Decay reactions are unlike any others. They occur when one substance decays
into one or more others. These are common in solutions or where the chemical
bonds are weak. They present a problem because a reaction is occurring without
any interaction of substances.

CHAPTER 3. IMPLEMENTATION 20

Other versions of π-calculus are better suited to the modelling of certain fea-
tures of biochemical systems. When studying the work of others in the field I
came across some which had accommodated a τ action. This is an action that
can be performed at any time with no communication. It is unfortunate that this
had not been combined with the stochastic nature of the π-calculus that I have
studied.

τ.p → p

One way to get around this is to have a dummy process. Initially I intended to
have a dummy process created with each substance capable of a decay reaction.
So the reaction A →k B would look like this...

...

!A(); A_dummy<> (k<>;() + ...) |

!A_dummy(); k(); B<>;() |

!B(); (...) |

...

This is not by any means a neat solution and does not represent the low level
behaviour of the substances accurately, but it would give the correct data when
simulated. A and A_dummy would communicate via k at the correct rate, then both
would become idle processes and leave a new active B. The creation of A_dummy
makes no difference and is instantaneous if it has infinite rate. Should A react
differently and not decay at all then A_dummy would simply continue to exist in
the system as it is.

A neater solution is to dispense with the dummy reaction and use the reaction
constant itself. This means that instantiation of the dummy process does not
have to be dealt with. The input end of the channel stands alone as a replicated
channel which then instantiates the results of the decay.

...

!A(); (k<>;() + ...) |

!k(); B<>; () |

!B(); (...) |

...

Multiple reactants

So far we have looked only at reactions with two or fewer reactants. Reactions
with more than two are extremely rare, but nonetheless they are defined as valid

CHAPTER 3. IMPLEMENTATION 21

chemical reactions and must be catered for.

Reactions with more than two reactants cause a problem because only two pro-
cesses may communicate at any one time. Channels have to be chained in order to
involve more processes. Realistic rates may be maintained by having the first link
in the chain as a finite channel then the others following with infinite rates. This
will maintain the correct stochastic behaviour whilst preventing a race condition
where the third reactant is ‘swiped’ away by another reaction during a chained
one. A race condition cannot happen because infinite channels have priority over
finite ones where a suitable input is available. Below is the representation of the
reaction A + B + C →k D. After A and B communicate (via k1), A becomes the
idle process and B and C go on to communicate (via k2) before C instantiates D.

!A(); (k1<>; () + ...) |

!B(); (k1(); k2<>; () + ...) |

!C(); (k2<>; D<>; () + ...) |

!D(); (...) |

Race conditions and Deadlock

Race conditions can occur when there is no third reactant available. There is no
way of ensuring that there is an available third reactant before the reaction starts.
If there isn’t then the first two may be locked together indefinitely. Consider the
system containing the following two reactions.

A + B + C → D
X + Y + C → Z

If the system contains no C atoms but plenty of the other atoms, then either
reaction may occur many times and build up a system full of deadlocked sub-
stances. They will stay like this until a C atom is created in the system. There
would then be a race condition between the two reactions over the possession of
the C atom.

This is similar to what happens in real chemical reactions. Most three way
reactions are really of the form below.

A + B ⇀↽ AB∗ + C → D

Generally, in three way reactions, the reactants combine in two stages. Where
there is no third reactant available, the bound state of the first two reactants
decays into its original substances. Thus, A and B oscillate very quickly between
stable and unstable states and occasionally react with C during their unstable

CHAPTER 3. IMPLEMENTATION 22

state. It would make sense to try and imitate this by allowing the first two reac-
tants to undo their reaction; all attempts to do this have led to an inconsistent
system as we cannot be sure of the individual reaction rates.

!A(); (k1<>; () + ...) |

!B(); (k1(); (k2<>; () + A<>;B<>;()) + ...) |

!C(); (k2<>; D<>; () + ...) |

!D(); (...) |

In the example above, after a communication via channel k1 has occurred, pro-
cess B can either communicate with C via k2 or instantiate a new A then B to
return to the original state. Since k2 and A both have infinite reaction rates the
Gillespie algorithm6 may choose either one with equal probability. So, half the
time, the reaction will be undone even when there is a C atom available. This
effectively halves the probability of a completed reaction. Doubling the reaction
rate would solve this problem in the long run, but each successful reaction would
effectively take twice as long. This would have huge repercussions on the system
as a whole and would not be a realistic representation of the real life system at all.

The only way to solve the problem of deadlock within the system is to encourage
users to enter a three way reaction as three separate reactions with an unstable
substance:

A + B → AB∗ AB∗ → A + B AB∗ + C → D
This is only needed where the number of C atoms in the system may reach zero.
Otherwise the π-calculus generated faithfully represents of the real system. The
likely concentrations of C will either be obvious from the initial concentrations
or can be deduced from one simulation.

Information redundancy

The representation of systems in the form of differential rate-equations has great
redundancy of data. Each term of the equation represents the contribution of
a particular reaction to the change in a substance’s volume. To recap, the rate
equations for the reaction A + B →k C + D are:

d[C]
dt

= k[A][B] d[D]
dt

= k[A][B]
d[A]
dt

= −k[A][B] d[B]
dt

= −k[A][B]

The equations for A and B are redundant as they contain no new information.
In a larger system, with more reactions, A and B may be products of another

6Exact stochastic simulation of coupled chemical reactions [Gillespie, 1977]

CHAPTER 3. IMPLEMENTATION 23

equation and so their equations may be needed to represent the system.

The choice is now to either to enforce the existence of negative terms as part
of the valid system or to ignore them completely. The goal of my project was to
represent all valid systems correctly. By ignoring the negative terms, I can also
translate invalid systems into valid systems in π-calculus. By allowing transla-
tion of systems with only positive terms specified, the readability of the input file
can be greatly improved. A quick glance at the larger example in the appendix
should convince you of the benefits of simplifying the inputs needed.

3.5 Translation

The Translation algorithm was developed from techniques used to make hand
translation easier. The idea of using a table to represent the information was
already in existence7 and is extremely practical for hand translation.

A + B → C + C
A + C → D
C + B → E + D

-1 -1

-1

2 -1 -1

1

1

k1 k2 k3

A

B

C

D

E

k1

k2

k3

A = k1<> + k2<>
B = k1();(C|C) + k3();(E|D)
C = k2();(D) + k3<>
D = 0
E = 0

1

Figure 5: Table used for hand translating systems into π calculus.

This idea is to have a column for each reaction, identified by its reaction rate
constant, and a row for each substance. Entries are integer values representing
the role a particular substance plays in the corresponding reaction. Negative
values imply that the substance is a reactant and is ‘used up’ on the left hand
side of the reaction. Positive values imply that the substance is a product and is
‘created’ by the reaction. Follow the entries for substance C in the table above.
In the first reaction two molecules are created whereas, in each of the second and
third, one molecule is destroyed. Blank entries are where the substance is not

7Reference: ...

CHAPTER 3. IMPLEMENTATION 24

involved in that particular reaction.

A valuable feature of the table is that it is equally easy to create it from a
set of rate equations as from a set of chemical reactions.

Hand translation

Manual translation is performed by traversing the table vertically, building up
expressions in π-calculus for each substance in turn. Assuming every reaction
has exactly two reactants, we traverse the table as follows.

• For each negative entry we add an output action to the substance’s process.

• For each positive entry we add that substance to the list of substances being
created in parallel after a communication.

• Care must be taken to pair up input and output channels.

This will produce a set of processes that can be combined in parallel to make a
complete system in π-calculus without too much problem. However this method
is inefficient both in time and space8 and is not suitable for systems that contain
reactions with more or fewer than two reactants.

Machine translation

The algorithm implemented by the translator is similar to that described above,
but has linear complexity rather than quadratic complexity. A different structure
is used along with various other techniques for coping with systems other than
the most basic.

Decay reactions

Reactions with only one reactant are not a problem. When no corresponding
negative entry is found to make up a pair of reactants, the channel is added as a
decay channel type. This is dealt with by the module that turns the information
into a string to be fed into SPiM.

Chained reactions

Since reactions with more than two reactants need chained actions, a different
strategy was needed to traverse the table. An array of constants and table entry
lists was used to conserve space. The ‘table’ therefore has to be traversed reaction

8O(n2) since the number of constants and substances is approximately the same

CHAPTER 3. IMPLEMENTATION 25

by reaction rather than substance by substance - by column rather than by row.
Each column in the table is represented as a list which is divided into positive
and negative terms. Actions are then inputs, outputs or inouts. An inout is
an inout channel followed by an output. This means that the translator can cope
with arbitrarily long chains of communications.

3.6 SPiT

There are five main modules of the translator, and three others containing im-
portant data structures and their associated update functions. The module sig-
natures are listed in the index, but here is a description of the function of each
module and its data structures in diagrammatic form:

main

lexer

yaccer

tabler

walker

linker

equation

constant

substance

input file

output file

Figure 6: Modular structure of the translator

The Lexer

The lexer was generated by a program called OCAMLLEX, inspired by the C
equivalent ‘lex’. The semantics and usage is similar, but with a more OCAML
appropriate syntax. The token details are listed in the appendix. The module
simply takes an input stream and returns a token each time the lexer function is
called.

CHAPTER 3. IMPLEMENTATION 26

The Yaccer

As the name suggests this is a parser generated by OCAMLYACC, inspired by
the C equivalent ‘yacc’9. It receives the tokens from the lexer and runs them
through a finite state machine to identify the different areas of syntax and inter-
pret them accordingly.

The input is a declaration of data, not an executable set of instructions, and
so there is no abstract syntax tree. Instead the parser returns a list of equations,
list of substances and a list of constants. Each equation is defined according
to the equation module, with each occurring substance or constant checked for
validity and referenced via its index.

substance constant

int

...
substance

substance

...

substance

substance

...

d[A]/dt = + 3k[A][B] - 2j[C][D]

constant

int

Figure 7: Equation data structure

As each new substance is encountered it is assigned an index which later becomes
the index into an array to store corresponding table entries. It is also added to
the list of substances. This is not an ML list, but rather a binary tree. Before
the substance can be added the tree must be checked for previous occurrences.
Substance names are usually very similar and will often be confused. Overloaded
use is forbidden and is identified quickly. The tree ensures fast10 search and up-
date of the substance list by ordering it by a hash of the name. The hash is
computed and stored at the nodes with the substances to avoid recompilation
costs. The constants are identified and stored almost identically. Below is an
illustration of the binary tree data structure and the equation list. Using a hash

9Yet Another Compiler Compiler
10O(log n) - standard binary tree update and lookup

CHAPTER 3. IMPLEMENTATION 27

of the name prevents the pathological case11 of alphabetically ordered substances
and constants.

concentration

index

hash

substance

concentration

index

hash

substance concentration

index

hash

substance

...

Figure 8: Binary tree used to store constants and substances

The Tabler

The tabler represents the restructuring of the data from equations into a struc-
ture similar to that of the table needed for the translation. Although a table is
ideal for hand translation, the majority of the entries will be left blank and will
not only waste space, but also waste time reading them. A more efficient design
was used.

The tabler flattens both binary trees into an array of substances and an array
of constants. It then walks the list of equations and forms a list of ‘(substance
index, table entry): int * int’ tuples for each constant. The substance index
provides a direct link into the relevant array entry for that substance. The table
entry indicates the relationship that substance has in the reaction corresponding
to that constant12.

The Walker

The walker walks the table and produces an expression in pseudo π-calculus for
each substance. It returns an array of processes. Each process consists of a

11The worst case is a preordered data set, which would result in a linear structure rather
than a balanced tree

12The table entry is positive if the substance is a product and negative otherwise. The
absolute value indicates how many molecules of that substance is involved

CHAPTER 3. IMPLEMENTATION 28

summation detailing the behaviour of the substance in the corresponding sub-
stance array entry. Below is a snippet of code which illustrates what the array
of processes (or summations) contains. For each channel there is the possibility
of listing the results of the reaction in the form of an int list. The integers
correspond to the indexes of the substances that are produced in the reaction.

type channel = Output of string

| Input of string

| Inout of string * string

| Dumout of string;;

type summation = Idle

| Choice of channel * int list * summation;;

The linker

The linker links the actions of the processes together, flattens them into a string,
and sandwiches them together with constant and substance declarations and ini-
tiation code.

This module is probably the simplest module. As much processing of information
is done as possible in advance of this stage in order to keep it that way. This
module is the only part of the translator which is simulator specific. To adapt the
program for a different simulator with a similar syntax, this is the only module
that would need to be re-written. In this way the translator is as versatile as
possible, fulfilling the initial specification.

Complexity

Apart from the yaccer module, all other modules are linear in complexity. The
majority of the work is done in building the binary trees of substances and con-
stants, without which the other modules may well be quadratic in complexity.
For each substance and for each constant there is a one-off cost of updating the
tree when the substance or constant is found. This is O(log n) given that the
substance or constant is the nth. The cost of forming the trees is therefore the
sum of the cost of each update.

O(log C!S!) =
∑S

n=0 O(log s) +
∑C

n=0 O(log c)
where S and C are the total numbers of substances and constants

Most substances will have a corresponding rate equation, and will have fewer
than ten terms referring to substances and constants, so we can approximate the

CHAPTER 3. IMPLEMENTATION 29

cost of processing the equations to O(S log S + S log C). We know that nn

grows more quickly than n! so if we assume that the number of substances and
constants are going to be about the same, the complexity of the program can be
reduced to O(n log n) which is a very acceptable value.

Coding style

OCAML is a language with a modular system as well as the facility for object-
oriented programming. During the first stage of implementation I explored vari-
ous usages of the language, and eventually decided on a style similar to that used
for SPiM.

I saw no need to take advantage of the capacity for object-oriented programming
as the modular system provides more than adequate encapsulation. Experiments
made with object-oriented models quickly became verbose, and so instead I used
the syntactically more beautiful CAML13 datatypes.

I took full advantage of OCAML’s less ‘functional’ features. Most of the data
structures are centred around arrays and mutable references. The language de-
veloped to describe the mathematical models is extremely declarative in nature,
as is the stochastic π-calculus, and so did not lend itself to a purely functional
way of processing.

I decided to continue with OCAML rather than move over to CAML or a com-
pletely different language, despite the lack of English language documentation for
the newer language, in order to maintain the possibility of complete integration
with SPiM at a later date.

13OCAML was developed from the non-object oriented member of the ML family, CAML

Chapter 4

Evaluation

4.1 Testing

The evolutionary model of design used in the preparation stages of the project
allowed various different testing methods to be employed. Testing and evaluation
was an ongoing process throughout. This ensured that as the project evolved I
had always a working system to go from and that any difficulties were encountered
and dealt with early on.

Algorithm testing

During the design of the translation algorithm it was necessary to constantly
road-test possible methods by hand. By writing a practice draft I was able not
only to improve on the way data was structured but also rethink which module
was responsible for which part of the translation.

Syntax Testing

In order to make informed decisions about the way different features of the bio-
chemical systems should be represented within the π-calculus, it was necessary
to try and test many different ideas. The semantics of SPiM π-calculus are com-
plicated by the stochastic nature of the language.

It was necessary to run many examples to convince myself of the equivalence
of different ways of describing systems in π-calculus. I had to ensure that two
systems that I deemed to be semantically equivalent did in fact give convincingly
similar results and that the expected behaviour was observed.

30

CHAPTER 4. EVALUATION 31

Code Testing

The testing model devised at the preparation stage worked well. To recap, I
implemented a skeleton form of each module and tested them all together. I
used the output of one module to test the next, printing datastructures where
necessary. I then went on to add more functionality to the translator, testing
between each change.

Most errors were caused by common mistakes, like traversing an array in the
wrong direction or following the left sub-tree instead of the right, and were picked
up quickly.

As well as checking for errors in translating, I also tested appropriate errors
and warnings. I introduced mistakes into the input file and checked that the
translator produced the correct warning or error before exiting gracefully.

Simulation

Finally, it was time to see how my generated π-calculus compared to small scale
system-specific examples that come with SPiM. By translating and simulating
each example, I was able to see the translator in action for a variety of different
systems before moving onto a much more ambitious data set.

A neat little example is included below. This is one of the code samples which
comes with SPiM.

(* H + H <==> H2 *)

(* H = share<>, H Bound = h_bound<> *)

0.2/1000

new share:5.0:<<>>

new h_bound:0.0:<>

new H:<>

new Init:<int>

(!H();

new e:0.05:<>

(share<e>; (h_bound<>;() + e<>; H<>)

+ share(e); (h_bound<>;() + e(); H<>)

)

| !Init(n); if n > 0 then (H<> | Init<n-1>)

| Init<100>

)

CHAPTER 4. EVALUATION 32

Below is the code generated for this reaction by my translator.

0.2/1000

new k2:0.50:<>

new k1:5.0:<>

new H2:<>

new H:<>

new H2_idle:0.0:<>

new H_idle:0.0:<>

new Init:<int>

(!H2(); (k2<>;() + H2_idle<>)

| !H(); (k1(); (H2<>;()) + k1<>;() + H_idle<>)

| !k2(); (H<> | H<>)

| !Init(n); if n<100 then

(if n<100 then H<> |

Init<n+1>)

| Init<0>

)

The two examples, although syntactically quite different, give convincingly
similar results. The variation is due to the stochastic nature of SPiM. No two
simulations should be the same.

Figure 9: (left) SPiT generated (right) Hand written calculus

Simulation was a valuable part of testing. Once the translator was producing
valid π-caculus, the π-caculus had to be tested to see if it represented the system
correctly. In most cases the simulation results were satisfactory. Earlier experi-
ments and careful consideration of the semantics had given a clear indication of

CHAPTER 4. EVALUATION 33

the behaviour of most systems.

One problem discovered during simulation was that of binding hierachy within
the π-calculus. The choice operator ‘+’ bound more tightly than expected. It was
not included in the SPiM manual and I made the wrong assumptions. This misin-
terpretation of the syntax was picked up when I began simulating and comparing
the example systems handwritten by Andrew Phillips for SPiM. Once discovered
it was quickly rectified.

4.2 Mitogen-Activated Protein Cascade

The title of this project describes the ultimate goal to be the generation of cell
cycle models in π-calculus from existing mathematical models. So far I have
demonstrated only that it can translate small theoretical models with similar
behaviour. I move now to a larger example taken from a real cell cycle.

The cell cycle is a highly regulated process. Many complex signals are needed to
control the replication of the cell. One of the most significant signalling mecha-
nisms is the MAPK cascade and it is this that I chose to model.

Why MAPK?

One of the beauties of modelling systems in SPiM is that the concentrations of the
substances are discrete so that every reaction is modelled as an individual event.
The MAPK cascade is extremely sensitive. It takes one input enzyme molecule to
activate the three stage process which then outputs possibly hundreds of protein
molecules. The responsiveness of the system can then clearly be seen. 1

Figure 10: MAPK reactions with marked catalyst action

Work regarding this system has already been undertaken by Luca Cardelli2. He

1‘Ultra-sensitivity in the mitogen-activated protein cascade’ Chi-Ying F. Huang and James
E. Ferrell, 1996

2Microsoft Research

CHAPTER 4. EVALUATION 34

has hand-translated and simulated the system, although for a different version
of SPiM. This gave me an excellent base to start from, as I could compare the
results I got from my generated π-calculus with the results he has published on-
line.

Results

Both my handwritten input file and the translated π-calculus can be found in the
appendix. Here I include only a graphical comparison of the results.

Figure 11: Results from SPiT generated π-calculus

Figure 12: Results from hand translated π-calculus

Due to the stochastic nature of the systems, the graphs are not expected to look

CHAPTER 4. EVALUATION 35

identical. Each version was simulated multiple times to ensure that in general
the graphs gave the same results. The slight differences between the two graphs
are typical of the slight variations between simulations. Two sets of results from
the same π-calculus model would vary similarly.

Chapter 5

Conclusion

I consider that I have made a small yet significant contribution to the study of
π-calculus and the simulation of biochemical systems. At this point, I attempt
to evaluate what has been achieved and justify any changes I would have made
with hindsight.

5.1 How suitable is stochastic π-calculus in the

modelling of genetic networks?

This is the question that I set out to explore, and am now able to answer. No
language can contain everything, but π-calculus has what is needed to represent
the biochemical systems to which I have applied it. I have demonstrated that
any system that can be represented as a system of biochemical equations, and
fits the appropriate behaviour model expected of the Gillespie algorithm, can be
translated into π-calculus and simulated to obtain appropriate results. I have
thus produced a practical translation algorithm and tool, but that is not to say
that stochastic π-calculus was necessariy the best language to translate into.

The event-driven method of simulating reactions with distinct processes for each
substance is highly suited to biochemical systems and their patterns of interac-
tion on the whole, but there are many different type of reactions and not all fit
such a uniform conception.

The introduction of a τ channel would create a cleaner syntax. By allowing
processes to reduce from one state to another independently from the rest of
the system, you can effectively model decay reactions directly without the use of
dummy processes or other such clumsy solutions. In order to find a sensible way
of representing decay reactions I had to move away from the event based model
of reactions.

36

CHAPTER 5. CONCLUSION 37

It is fortunate that few reactions have more than two reactants, as the repre-
sentation of such reactions is complex. To introduce the possibility of deadlock
into the system was undesirable, as it does not accurately represent real life sys-
tems. Ideally, three-way reactions would only occur when all three substances
are available, and the reaction would be a single event. The stochastic π-calculus
is not at all suited to represent such equations.

I have yet to encounter a π-calculus with the facilities to represent equations
with more than two reactants, yet within the broader study of systems calculi
and concurrent languages it is not hard to come across a language wherein this is
possible. Petri-nets are a prime example of this capability. They are designed to
be event driven, with any event able to have an indefinite number of preconditions.

It is unfortunate that many features of concurrent languages suited to represent-
ing biochemical systems do not have any means of stochastic simulation, without
which there is no way of producing any realistic simulation data. I conclude that
further work is required before π-calculus is ready to give a truly accurate model
of biochemical systems and genetic networks.

5.2 How closely have I met the goals set by my

proposal?

In the introduction of my project proposal, I said I aimed to ‘create a bridge’
between the knowledge of the biochemists and the knowledge of the computer
scientists. I have created a comprehensive translator that will cope with a wide
variety of different systems. Where stochastic π-calculus has the capability, SPiT
can translate the system into it.

Initially I divided the work up into two main areas: the formal specification
of an input language, and the translator itself. Both of those tasks were planned
and completed within the reasonable time frame set. The second task was the
more challenging.

5.3 How could this project have been improved

with hindsight?

With hindsight, the first thing I would have changed is the timetable that I
worked out for the project proposal. I managed to reach most of the milestones
within approximately the correct time frame, but that was partially due to the
underestimation of some tasks trading off against the over estimation of others.

CHAPTER 5. CONCLUSION 38

I would have liked more time to learn the languages that I have used. I ex-
pected the task to be easier than it was; and I underestimated the difference
between ML, with which I was already familiar, and OCAML.

I would still have made the same design choices. I am satisfied with the sim-
ulation results and the extent to which I have been able to demonstrate the
validity of the translations performed by SPiT.

5.4 Future directions

The language of π-calculus will continue to evolve, and with it will the simulators.
I hope SPiT will continue to be of some use. It should be straightforward for
SPiT to evolve with future versions of SPiM. At the time of writing there is a
new version of SPiM about to be made public. It is fortunate that I put such a
great emphasis on abstraction and adaptivity. It is anticipated that only the last
module, the linker, will need alteration to cope with the newer SPiM syntax.

I hope that, by making the simulation of genetic networks accessible, I will have
encouraged more biologists to consider this as an effective analysis technique and
inspire important breakthroughs in medicine.

39

40

Bibliography

R. Milner Communicating and Mobile Systems : The Pi-Calculus 1999

C. Priami Stochastic pi-Calculus 1995

C. Priami, A. Regev, E. Shapiro, W. Silverman Application of a stochastic
name-passing calculus to representation and simulation of molecular
processes 2001

M. Takane Modeling Gene Regulatory Networks with Recurrent Neural
Networks 2002

Kutter, Neihren and Blossey Gene Regulation in the π-calculus: Simu-
lating Cooperativity at the Lambda Switch 2004

A. Phillips and L. Cardelli A Correct Abstract Machine for the Stochastic
π-calculus 2004

D. Gillespie Exact stochastic simulation of coupled chemical reactions
1977

C-Y. Huang and J. Ferrell Ultrasensitivity in the mitogen-activated pro-
tein cascade 1996

L. Cardelli MAPK Cascade 2005

L. Cardelli Biological networks in Stochastic π-calculus 2005

SPiM
http://www.doc.ic.ac.uk/ anp/spim/

BioSpi
http://www.wisdom.weizmann.ac.il/ biospi/

41

SBML
http://sbml.org/

Looking for Clues About How Proteins Talk to Each Other
http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr050202.htm

Sampling of complex networks in nature and society
http://www.jeffkennedyassociates.com:16080/connections/concept/

42

Glossary of terms

Genetic network A directed graph with nodes representing genes and an edge
indicating the activation of one gene by another. Genes do not interact
directly. They interact via the proteins they encode, so the terms genetic
network and protein network are often used interchangeably.

CAML Categorical Abstract Machine Language A general purpose programming
language that supports functional or imperative programming styles.

Mathematical model A system of rate equations describing a biological sys-
tem.

OCAML Objective Categorical Abstract Machine Language A highly expressive
language that combines object oriented programming with the ML static
type system.

π-calculus Developed by Robin Milner as a formal language for describing con-
current computation processes.

Protein Network A protein network is a graph whose nodes are proteins and
whose edges represent physical interactions between proteins.

Rate Equation A differential equation expressing the rate of change of concen-
tration of a substance with respect to time.

Reaction Rate Constant A constant describing the rate of a reaction.

SPiM Stochastic π-calculus Machine A simulator for modelling biological sys-
tems in π-calculus [Phillips, 2004]

SPiT Stochastic π-calculus Translator A mathematical model to π-calculus trans-
lator for biological systems.

Stochastic π-calculus Developed by Corrado Priami to allow rates to be as-
signed to communications within the π-calculus.

43

44

Appendix A

SPiT files

A.1 Make file

ocamllex dlexer.mll

ocamlyacc dyaccer.mly

ocamlc -c constant.mli

ocamlc -c substance.mli

ocamlc -c equation.mli

ocamlc -c dyaccer.mli

ocamlc -c tabler.mli

ocamlc -c walker.mli

ocamlc -c linker.mli

ocamlc -c constant.ml

ocamlc -c substance.ml

ocamlc -c equation.ml

ocamlc -c dyaccer.ml

ocamlc -c dlexer.ml

ocamlc -c tabler.ml

ocamlc -c walker.ml

ocamlc -c linker.ml

ocamlc -c main.ml

ocamlc -o translator substance.cmo constant.cmo equation.cmo

dlexer.cmo dyaccer.cmo tabler.cmo walker.cmo linker.cmo main.cmo

A.2 Signature files

The module signature files declare the public data structures, functions and ex-
ceptions.

i

APPENDIX A. SPIT FILES ii

constant.mli

(* name = rate *)

type constant = Constant of string * float;;

type constant_index = Constant_index of int * constant;;

type constant_tree = Node of constant_index

* int

* constant_tree ref

* constant_tree ref

| Leaf;;

(* update_constant_tree numofconsts const_id const_rate ctree *)

val update_constant_tree : int -> string -> float -> constant_tree ref -> unit;;

val get_constant_index : string -> constant_tree ref -> constant_index;;

exception InvalidConstantName;;

exception DuplicateConstantName;;

substance.mli

(* substance:concentration; *)

type substance = Substance of string * int;;

type substance_index = Substance_index of int * substance;;

type substance_tree = Node of substance_index

* int

* substance_tree ref

* substance_tree ref

| Leaf;;

(* update_sub_tree numofsubs sub_id sub_concentration stree *)

val update_substance_tree : int -> string -> int -> substance_tree ref -> unit;;

val get_substance_index : string -> substance_tree ref -> substance_index;;

exception InvalidSubstanceName;;

exception DuplicateSubstanceName;;

equation.mli

(* +/- const scaler process list *)

APPENDIX A. SPIT FILES iii

type term = Posterm of Constant.constant_index * int * Substance.substance_index list

| Negterm of Constant.constant_index * int * Substance.substance_index list;;

(* d[process] = termlist *)

type equation = Equation of Substance.substance_index * term list;;

tabler.mli

(* these are lists of (table entry, const/sub num) pairs *)

type constant_branch = Constant_branch of Constant.constant

* (int * int) list;;

type table = Table of constant_branch array * Substance.substance array;;

(* tabler numofconst ctree numofsubs stree eqnlist *)

val tabler : int -> Constant.constant_tree ref ->

int -> Substance.substance_tree ref ->

Equation.equation list -> table;;

walker.mli

type action = Output of string

| Input of string

| Inout of string * string

| Dumout of string;;

type summation = Idle

| Choice of action * int list * summation;;

val walker : Tabler.table -> summation array

* int array

* (string * int list) list;;

linker.mli

val linker : Walker.summation array

-> int array

-> Tabler.table

-> (string * int list) list

-> string;;

Appendix B

MAPK example

B.1 SPiT Input File

20.1

a1=1.0;

a2=1.0;

a3=1.0;

a4=1.0;

a5=1.0;

a6=1.0;

a7=1.0;

a8=1.0;

a9=1.0;

a10=1.0;

d1=1.0;

d2=1.0;

d3=1.0;

d4=1.0;

d5=1.0;

d6=1.0;

d7=1.0;

d8=1.0;

d9=1.0;

d10=1.0;

k1=1.0;

k2=1.0;

k3=1.0;

iv

APPENDIX B. MAPK EXAMPLE v

k4=1.0;

k5=1.0;

k6=1.0;

k7=1.0;

k8=1.0;

k9=1.0;

k10=1.0;

%%

KKK:100;

KK:100;

K:100;

E2:1;

E1:1;

KKP’ase:1;

KP’ase:1;

%%

d[KKP’ase] = -a4[KK_P][KKP’ase] + d4[KK_P__KKP’ase] + k4[KK_P__KKP’ase] -

a6[KK_PP][KKP’ase] + d6[KK_PP__KKP’ase] + k6[KK_PP__KKP’ase];

d[KP’ase] = -a8[K_P][KP’ase] + d8[K_P__KP’ase] + k8[K_P__KP’ase] -

a10[K_PP][KP’ase] + d10[K_PP__KP’ase] + k10[K_PP__KP’ase];

d[E1] = d1[KKK__E1] + k1[KKK__E1] - a1[KKK][E1];

d[E2] = d2[KKKst__E2] + k2[KKKst__E2] - a2[KKKst][E2];

d[KKK] = -a1[KKK][E1] + d1[KKK__E1] + k2[KKKst__E2];

d[KKK__E1] = a1[KKK][E1] - d1[KKK__E1] - k1[KKK__E1];

d[KKKst] = -a2[KKKst][E2] + d2[KKKst__E2] + k1[KKK__E1] + k3[KK__KKKst]

+ d3[KK__KKKst] - a3[KKKst][KK] + k5[KK_P__KKKst]

+ d5[KK_P__KKKst] - a5[KK_P][KKKst];

d[KKKst__E2] = a2[KKKst][E2] - d2[KKKst__E2] - k2[KKKst__E2];

d[KK] = -a3[KK][KKKst] + d3[KK__KKKst] + k4[KK_P__KKP’ase];

d[KK__KKKst] = a3[KK][KKKst] - d3[KK__KKKst] - k3[KK__KKKst];

APPENDIX B. MAPK EXAMPLE vi

d[KK_P] = -a4[KK_P][KKP’ase] + d4[KK_P__KKP’ase] + k3[KK__KKKst] +

k6[KK_PP__KKP’ase] + d5[KK_P__KKKst] - a5[KK_P][KKKst];

d[KK_P__KKP’ase] = a4[KK_P][KKP’ase] - d4[KK_P__KKP’ase] - k4[KK_P__KKP’ase];

d[KK_P__KKKst] = a5[KK_P][KKKst] - d5[KK_P__KKKst] - k5[KK_P__KKKst];

d[KK_PP] = k5[KK_P__KKKst] - a6[KK_PP][KKP’ase] + d6[KK_PP__KKP’ase] -

a7[KK_PP][K] + d7[K__KK_PP] + k7[K__KK_PP] + d9[K_P__KK_PP] +

k9[K_P__KK_PP] - a9[K_P][KK_PP];

d[KK_PP__KKP’ase] = a6[KK_PP][KKP’ase] - d6[KK_PP__KKP’ase] -

k6[KK_PP__KKP’ase];

d[K] = -a7[K][KK_PP] + d7[K__KK_PP] + k8[K_P__KP’ase];

d[K__KK_PP] = a7[K][KK_PP] - d7[K__KK_PP] - k7[K__KK_PP];

d[K_P] = k7[K__KK_PP] - a8[K_P][KP’ase] + d8[K_P__KP’ase] - a9[K_P][KK_PP] +

d9[K_P__KK_PP] + k10[K_PP__KP’ase];

d[K_P__KP’ase] = a8[K_P][KP’ase] - d8[K_P__KP’ase] - k8[K_P__KP’ase];

d[K_P__KK_PP] = a9[K_P][KK_PP] - d9[K_P__KK_PP] - k9[K_P__KK_PP];

d[K_PP] = -a10[K_PP][KP’ase] + d10[K_PP__KP’ase] + k9[K_P__KK_PP];

d[K_PP__KP’ase] = a10[K_PP][KP’ase] - d10[K_PP__KP’ase] - k10[K_PP__KP’ase];

B.2 SPiT Generated π-calculus for the MAPK

example

20.1

new k10:1.0:<>

new k9:1.0:<>

new k8:1.0:<>

new k7:1.0:<>

new k6:1.0:<>

new k5:1.0:<>

new k4:1.0:<>

APPENDIX B. MAPK EXAMPLE vii

new k3:1.0:<>

new k2:1.0:<>

new k1:1.0:<>

new d10:1.0:<>

new d9:1.0:<>

new d8:1.0:<>

new d7:1.0:<>

new d6:1.0:<>

new d5:1.0:<>

new d4:1.0:<>

new d3:1.0:<>

new d2:1.0:<>

new d1:1.0:<>

new a10:1.0:<>

new a9:1.0:<>

new a8:1.0:<>

new a7:1.0:<>

new a6:1.0:<>

new a5:1.0:<>

new a4:1.0:<>

new a3:1.0:<>

new a2:1.0:<>

new a1:1.0:<>

new K_P__KK_PP:<>

new K__KK_PP:<>

new KK_P__KKKst:<>

new KK__KKKst:<>

new KKKst:<>

new KKKst__E2:<>

new KKK__E1:<>

new K_PP__KP’ase:<>

new K_PP:<>

new K_P__KP’ase:<>

new K_P:<>

new KK_PP__KKP’ase:<>

new KK_PP:<>

new KK_P__KKP’ase:<>

new KK_P:<>

new KP’ase:<>

new KKP’ase:<>

new E1:<>

new E2:<>

APPENDIX B. MAPK EXAMPLE viii

new K:<>

new KK:<>

new KKK:<>

new Init:<int>

(!K_P__KK_PP(); (d9<>;() + k9<>;())

| !K__KK_PP(); (d7<>;() + k7<>;())

| !KK_P__KKKst(); (d5<>;() + k5<>;())

| !KK__KKKst(); (d3<>;() + k3<>;())

| !KKKst(); (a2<>;() + a3(); (KK__KKKst<>;()) + a5(); (KK_P__KKKst<>;()))

| !KKKst__E2(); (d2<>;() + k2<>;())

| !KKK__E1(); (d1<>;() + k1<>;())

| !K_PP__KP’ase(); (d10<>;() + k10<>;())

| !K_PP(); (a10<>;())

| !K_P__KP’ase(); (d8<>;() + k8<>;())

| !K_P(); (a8<>;() + a9<>;())

| !KK_PP__KKP’ase(); (d6<>;() + k6<>;())

| !KK_PP(); (a6<>;() + a7(); (K__KK_PP<>;()) + a9(); (K_P__KK_PP<>;()))

| !KK_P__KKP’ase(); (d4<>;() + k4<>;())

| !KK_P(); (a4<>;() + a5<>;())

| !KP’ase(); (a8(); (K_P__KP’ase<>;()) + a10(); (K_PP__KP’ase<>;()))

| !KKP’ase(); (a4(); (KK_P__KKP’ase<>;()) + a6(); (KK_PP__KKP’ase<>;()))

| !E1(); (a1(); (KKK__E1<>;()))

| !E2(); (a2(); (KKKst__E2<>;()))

| !K(); (a7<>;())

| !KK(); (a3<>;())

| !KKK(); (a1<>;())

| !d1(); (KKK<>;() | E1<>;())

| !d2(); (KKKst<>;() | E2<>;())

| !d3(); (KK<>;() | KKKst<>;())

| !d4(); (KK_P<>;() | KKP’ase<>;())

| !d5(); (KK_P<>;() | KKKst<>;())

| !d6(); (KK_PP<>;() | KKP’ase<>;())

| !d7(); (K<>;() | KK_PP<>;())

| !d8(); (K_P<>;() | KP’ase<>;())

| !d9(); (K_P<>;() | KK_PP<>;())

| !d10(); (K_PP<>;() | KP’ase<>;())

| !k1(); (KKKst<>;() | E1<>;())

| !k2(); (KKK<>;() | E2<>;())

| !k3(); (KK_P<>;() | KKKst<>;())

| !k4(); (KK<>;() | KKP’ase<>;())

| !k5(); (KK_PP<>;() | KKKst<>;())

APPENDIX B. MAPK EXAMPLE ix

| !k6(); (KK_P<>;() | KKP’ase<>;())

| !k7(); (K_P<>;() | KK_PP<>;())

| !k8(); (K<>;() | KP’ase<>;())

| !k9(); (K_PP<>;() | KK_PP<>;())

| !k10(); (K_P<>;() | KP’ase<>;())

| !Init(n); if n<100 then

(if n<1 then KP’ase<> |

if n<1 then KKP’ase<> |

if n<1 then E1<> |

if n<1 then E2<> |

if n<100 then K<> |

if n<100 then KK<> |

if n<100 then KKK<> |

Init<n+1>)

| Init<0>

)

APPENDIX B. MAPK EXAMPLE x

Computer Science Tripos Part II Project Proposal

Generating definitions of cell cycles in π-calculus from mathematical models

Rosemary Francis, Newnham College

Originator: R. Francis

October 2004

Special Resources Required

The use of my own PC (700MHz Pentium, 256Mb RAM and 60Gb Disk). The
use of the pwf.

Project Supervisor: Dr P. Lio

Director of Studies: K. Edgcombe

Project Overseers: Dr S. Holden & Dr M. Richards

1

Introduction

I will be working with the mathematical framework of non-linear differential
equations describing the biochemical mechanisms of the cell replication cycle.
During the four-stage cell cycle of many common genetic networks there are
three checkpoints at which chromosomal reactions are halted and various checks
are performed. These are characterised as stable solutions to the equations.

When simulated the model can yield information about mutant behaviour and
other valuable insights without having the expense of a real experiment. However
these mathematical models are not ideally suited to such simulation and greatly
constrict the way in which the system can be analysed.

Better results can be gained by describing the system in a formal modelling lan-
guage such as π-calculus. At the moment though translation has to be done by
hand and is a tedious and repetitive task requiring specialised knowledge about
the strain of π-calculus used and the format needed by the π-calculus simulation
machine.

I aim to create a bridge between the biologists working on the cell data and
the computer scientists working on the simulation software, which can be used
to simulate cell mutations and cancers. This allows the development and testing
of specialised genetic drugs without the costly and slow process of constructing
real life experiments.

Work that has to be done

The project consists of two main piece of work:

1. A formal specification of the format of the mathematical description of the
genetic networks and a method of translation into process calculus.

This should not only provide a framework for the implementation side of the
project but also give insights into the suitability of π-calculus in describing
such genetic networks.

2. A system to automate the translation from the mathematical model into
process calculus which can then be run directly on a π-calculus machine.

The language I will use is called OCaml (Objective Caml). It is powerful
and easy to use with many sanity checks, which eliminate many possible
bugs. It is an open source implementation of Caml, a strongly-typed func-
tional programming language from the ML family. This means it is ideal for

2

proving consistency in my translation method. This is an obvious extension
to the project should I finish early.

I will use SPiM to simulate the case study network, a machine written by
Andrew Phillips of Imperial College. It is a fast simulator of stochastic
π-calculus with clearly defined program formats. This makes it an ideal
target for my translation tool.

Difficulties to Overcome

π-calculus is already very well defined, but I will need to define a formal descrip-
tion language for the differential equations. The equations are not written by
mathematicians and are an amalgamation of peculiar notations specific to biol-
ogy. The method of constructing a suitable input file for the program should be
easily accessible to non-computer scientists.

Having read other research papers on similar projects it is clear that there will
not be one obvious method of translation, but many different ways of tackling
the problem. There may not be a single way to represent the system in π-
calculus. SPiM uses a sophisticated asynchronous, stochastic simulation approach
and should provide interesting problems.

The main issues are that the grammar and semantics of the two description
formats (the equations and the calculus) are very different. I will develop a
multi-pass translator to cope with this as translating the equations into an al-
ternative format may aid the translation process. Once I have formalised the
endpoint data structures I will then work on the intermediate stages. SPiM op-
timisation should take place as a separate phase of the translation progress to
allow easy adaptation for other simulation machines.

The project will be closely related to the areas of semantics and compiler con-
struction as well as touching on formal specification and verification.

Starting Point

At the moment I am very new to π-calculus and to the way of describing cell
cycles in the form of mathematical equations. I am also not very familiar with
the language of OCaml. I will over the course of the research period of the project
familiarise myself with all three languages. The greatest challenge will be at the
biological end sifting the biology from the semantic information I need.

Aside from the part 1B courses I have little experience of parsers or semantics.

3

Backup

Although I plan to use my own PC for much of the work I will be able to use the
pwf machines in the event of a failure. Backup will be on the pwf via sftp and
on a flash memory stick.

Goals

My goal is to complete an implementation of the system described. Further
analysis in any direction I will see as an extension. By the end I should be able
to run an example genetic network description through the translator and obtain
suitable data by running the target description on the simulation machine.

Work Plan

I have broken the term time into approximately two week slots. This fits well with
the tasks I have to complete while allowing some flexibility during the vacation
periods. I anticipate needing longer than two slots for the theoretical side of the
project and implementation evaluation might run on if I decided to perform a
proper consistency analysis.

Michaelmas Term

Fri 22nd Oct : Project proposal deadline.
Mon 25th Oct - Fri 5th Nov : Write formal specification of the equation format
Mon 8th Nov - Fri 19th Nov : Begin design of the translation process
Mon 22nd Nov - Fri 3rd Dec : Plan translation phases and data structures required

Lent Term

Mon 24th Jan - Fri 4th Feb : Coding
Mon 7th Feb - Fri 18th Feb : Module integration and testing
Mon 21st Feb - Fri 4th Mar : Evaluation and genetic network simulation
Mon 7th Mar - Fri 17th Mar : First draft of dissertation

Easter Term

Mon 2nd May - Thurs 19th May : Exam revision and dissertation fine tuning
Fri 20th May : Dissertation Deadline

4

5

6

